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Summary. We analyze the role of political competition on the type of economic
policies that are selected in a one sector model of economic growth. We identify
conditions under which neoclassical optimal growth plans occur, and conditions in
which political business cycles occur. We find that the ability commit to multi-
period economic policy leads to less political stability of economic plans.

1. Introduction

We study a one-sector model of economic growth in which decisions about capital
accumulation and consumption are made by a political process. Each voter’s utility
for a consumption stream is the discounted value of that voter’s utility of consump-
tion in each period. We consider the case when voters’ one period utility functions
for consumption are identical but discount factors are different. We are particularly
interested in the conditions under which neoclassical optimal growth paths occur,
and conditions in which political business cycles occur. The answer depends on the
ability or inability to commit to multi-period economic plans.

The model we study is similar to that of Beck [1], who studied political behavior
in a continuous time, one-sector model of economic growth, where voters differ only
in their time preferences. Beck shows that if the set of feasible plans is limited to
consumption paths that are optimal for at least one voter, then the path that is
optimal for the voter with the median discount factor is a majority core. In this
paper, we study a discrete-time version of Beck’s model. We consider the case
where all plans, rather than just plans that are optimal for one voter, are available.

Section 3 considers the case when it is possible to commit for at least three
periods into the future. In this case, a political {majority rule) equilibrium plan will

* Support for this research was provided in part by NSF grant #SES-9022932 to the California Institute
of Technology. We are grateful to a referee for pointing out that our results could be extended to supra
majority rules, as in Proposition 1.
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not exist. For any feasible consumption plan, there is a perturbation which is
majority preferred to it. For any “neoclassical optimal” plan there exists a perturbed
plan that is preferred to it either unanimously or by all but one voter.

Section 4 considers the case when periodic commitment for a fixed time horizon is
possible, as might be the case with regular elections. We show that if plans are required
to satisfy a stationarity condition, then a minmax plan (a plan which minimizes the
maximum vote that can be obtained against it) yields a political business cycle.

Section 5 considers the case when it is impossible to commit to multi-period
plans. Then, we construct a model including both candidates and voters in which
there is a unique subgame perfect, stationary, symmetric equilibrium to the infinite
horizon two candidate competition game. The equilibrium is at the optimal
consumption plan for the median voter and is unique in the following sense: It is
the unique limit of subgame perfect equilibria to the finite horizon electoral game.

2. Feasible and neoclassical plans

We first discuss the set of plans that voters can choose from and a subset of those
which has been extensively discussed in the literature (“neoclassical plans”). Let
F:R, - R, be a twice continuously differentiable concave production function®
with F(0)=0, F'(0) = + o0, F'(c0) =0. Let k, be the per capita capital stock at the
beginning of date ¢, and ¢, be the consumption per capita on date ¢, and let
TeNu{oc} be the length of the time horizon. Given an initial capital k > 0, the
technology can be summarized in the fundamental equation of growth theory: for
t=0,1,2,...,T,
¢tk =Flk) (2.1)
where
ko=k, k,>0, ¢,>0. (2.2)

Thus each period, the output of production is divided between consumption and
capital for use in next period production. Any plan ¢ = {c,},,.r Which is a feasible
solution to (2.1) and (2.2) is called a feasible consumption plan. Let € denote the set of
feasible consumption plans.

We assume that there is a set N of n voters who all have the same one period
utility for consumption, but differ in their time preferences.? Voter ieN, has
a discount factor 0 < ¢, < 1, and this voter’s utility function U;:¥ — R over con-
sumption plans is given by

Udc)= 3. diulc), (2.3)

! The production function F(k) is frequently assumed to be of the form f(k) = f (k) + (1 — A)k, where i is
the depreciation rate of capital stock, and f(k) is the net output. Hence, (1 — A)k is the undepreciated
capital.

2 Boylan, Ledyard, Lupia, McKelvey and Ordeshook [1991] [4] examine experimentally the opposite
case when voters one period utility functions differ but the discount factors are identical.

3 One might worry about the distribution of ¢, across voters, but we will treat this as a public good. That
is, the elected candidate will pick c,, the amount of y, to be consumed, yielding voter i a utility level of u(c,)
for that period. Most of the results we show in this paper extend to the case where the good is private with
one period utility functions being logarithmic (see Boylan [3]).
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where w:R, - R satisfies #'(c) >0, ' (0)=o00 and u"(c) <0 for all ceR,. The
consumption good c is a public good: individuals cannot trade or save any portion
of the public good. Boylan [3] shows that this assumption can be eliminated if the
one period utility is logarithmic. We consider both the case of finite and infinite time
horizon T. We will assume throughout that any two distinct voters have distinct
discount factors:

In the case where there is just one voter, the above model reduces to the classical
one sector growth model with a representative consumer (see, e.g. Ramsey [13],
Solow [14], Cass [6]). In this case, the problem to be solved is:

max i d'ulc) (2.4)

ce?¢ t=0

The solution to the above problem will be called an optimal plan for §. A neoclassical
optimal plan is an optimal plan for some é¢(0, 1).

Any solution {(c}*,k¥)} .1 to (2.4) can be characterized by a family of policy
functions h,(k; T) and g,(k; T) = F(k) — h,(k; T)for the optimal capital and consump-
tion at time ¢, as a function of capital at the pevious time period, such that k¥ =k,
k¥ , =h(k¥ T) and c} = g,(k¥, T). For the infinite horizon model, the solution can
be expressed in terms of a single pair of functions h(k) = h,(k; o0) and g(k) = g,(k; o).
Further, hsatisfies b’ > 0 and h(k) < k* for k < k*, and h(k) > k* for k > k*, where k*
is defined by* F'(k*) = 1/.

The above results imply that the optimal path of capital begins at k, and
converges monotonically to k*. Also, the optimal path of consumption converges
monotonically to c¢* = F(k*) — k*. Similar results hold for the finite horizon case.
Here, one gets the so called “turnpike” theorem: For any ¢ > O thereisa T, > Osuch if
T>T, |k} —k*|>e¢for at most T, periods (see e.g., Gale [7]).

3. Political stability of economic plans

We first show that when there is more than one agent, neoclassical optimal plans can
always be defeated by large majorities.

Proposition 1: If the time horizon T satisfies T >2, then for any neoclassical
optimal plan, ce%, there is an alternative plan ¢'e%, which defeats ¢ by atleast n — 1
votes. If ¢ is not optimal for any voter i, then it can be defeated by n votes. The same
results hold if we restrict the set of alternative plans to those that differ from c at no
more than three consecutive periods.

Proof: Let c*e% be a neoclassical optimal plan, and let k* be the corresponding
capital plan. Thus, there is a § such that k* is optimal for the objective function
Ulk) = f:oétu(F(kx) —kipq)= —‘tT=05tu(ct)-

First, it follows by the assumptions that are made on v and F, that any maximum
must be an interior point in the space of possible capital plans. In other words,
0 <k, < F(k,_;)for all t. Now 0U/dk(k) is a vector with t'* element equal to

U (c)F (k) — 8 (e, )
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Hence if k is optimal for 6, then

ou'(c)F'(k)) = w(c,—1) (3.1)

. < _* -5_>
- “/(Co), u'(cy)

Let u; be the vector consisting of the first two components of U ;/0k (k). Then for any
voter j, we have, using (3.1) fort= 1,2,

Now define

u'(c,)
u'(cy)

u(cy)

u'(co)
=62 —200;+ 6% =(6—-5,*=0,

with equality if and only if 6, = 6. But then z is a vector which has positive inner

product with the utility gradients of all voters except those with discount factor 4. It

follows that for a sufficiently small perturbation of k* in the direction z, we can find
a new plan k which all voters with §; 5 J prefer to k*. O

F'(k,)— 8,5+ §28F (k,)

upz= 6 — 629,

One might think (incorrectly) that when utility functions differ only by one
parameter, that the median vote theorem would apply, implying that the optimal
plan for the voter with the median discount factor would be a majority core point.In
fact, the optimal plan for the median discount factor voter is defeated by a plan
supported by a coalition including patient and impatient voters. This plan has more
consumption in earlier periods (to satisfy the impatient voters), more consumption
in later periods (to satisfy patient voters), and less consumption in intermediate
periods (to make the plan feasible).

Given the result of Proposition 1 the next natural question to ask is if there are
any plans that are “more stable” than the neoclassical optimal plans. For any
¢,c'e%, write n(c,¢) = |{ie N: U (c)) > U (c) }| to be the number of voters who prefer
¢’ over c. A consumption plan ce% is a majority rule core if there is no other feasible
plan, ¢'e¥ such that n(c,c’) > n/2. Our next proposition establishes that any plan,
optimal or not, can be majority defeated by another plan. In other words, there is
no majority rule core. The proof of Proposition 2 follows from Proposition 2a, below.

Proposition 2: If T >2 and n >3 is odd, there is no majority rule core in €.

As a measure of the stability of a plan, we can use the size of the largest majority
by which it can be defeated. For any c, '€, define n(c) =max, n(c, c') to be the
maximum vote in € against c. Define n* = min, ., n(c). Any ce % for which n(c) = n*is
called a minmax plan. Given n/2 <q<n, any ce¥ for which n(c)<gq is called
a g-majority plan. We then have the following result. In this result [x] denotes the
integer part of x-the largest integer less than or equal to x.

Proposition 2a: If the time horizon T is at least two, and the number of votersnis at
least three, the minmax number, n*, satisfies

min<n—1 EL}— <n*< Tn
’ 2 =0 Tl T+1]




Political competition and economic growth 195

Proof: Fix k, and ky ;. For k =(k,k,,...,kg), write
T
Uik)= Y, otu(F(k)—k,.,) = Gok) + 6,G(k)
t=0

where 8; = (8;,67,...,07), Go(k) = u(F(ko) — k1), and G(k) is the vector of length T,
whose t™ element is G,(k) = u(F(k,) — k,, ;). Then the U, are in the class of intermedi-
ate preferences over ke RT, with parameters §,eR”. Further, given our assumptions
onu and F, it is easily verified that U, is a concave function of k, which has a global
maximum in RY, and that VG(k), (the T x T matrix with i, j* element 6G(k)/dk,) is
of full rank. It follows from Proposition 2 of Kramer [11] that n* = 2*, where 1* is
the minmax number of the set of Euclidean preferences over R” with ideal points at
5;:ie., for xeRT, u,(x)=||6,— x||%

The upper bound of [Tn/T + 1)] on A* now follows directly from Theorem 2 of
Greenberg [9]. To derive the lower bound on A*, we show that for any g-rule with
2g—n—1<¢=min[n— 3, T — 2], that the g-majority core is empty.

Fix x, and let p; = 2(§; — x) be the utility gradient for ; at x. If x = §, for some i,
then by Proposition 1, if we let k be the optimal plan for voter i, then if T > 2, there is
a plan k' which defeats k by n — 1 votes.

If x #4; for all i, it follows from Lemma 1 below (where w=T + 1, m=min(n, w),
and v; = (1, §,)), that thereis a set L = N with |L| =¢ =min{n— 3, T — 2], such that
forany j¢L,{p;;ieLu{j}}islinearly independent. McKelvey-Schofield [12] prove
that a necessary and sufficient condition for x to be in the g-core is that the pivotal
gradient restrictions (PGR) must be satisfied: For each pivotal coalition M, the
gradients of the set of voters M’ whose gradients lie in the same linear subspace as
those of M must semipositively span the zero vector. (A coalition M is pivotal if for
every partition {4, B} of N — M, either AUM or BuU M is a winning coalition.) For
a g-majority rule, the pivotal coalitions are those with at least 2¢g — n — 1 members.
Aslong as g < n, it follows from PGR that a necessary condition for x to be in the
g-core is that for each pivotal coalition M, there must exist a je N\ M such that the
gradients of the members of M U {j} are linearly dependent. By assumption, no u;
have an ideal point at x. By lemma 2a, we must have 2¢ —n—1 > /£, a contradiction.
It follows that whenever ¢ <(/+n+1)/2=min{n—1,(n+ T — 1)/2}, that the
g-core is empty. But then 2* > min{n 1, [(n + T — 1)/2]}. O

Lemma 1: Let w>m > 3, and let {y;} = R be any collection of at least m vectors
such that any combination of mv;’s is linearly independent. For aeR¥, let u; = v; — a.
Then there is a set of (m — 3) u;’s which do not span any other u;.

Proof: Suppose the result is false. Then for every set of (m — 3) u;’s, there is a u; which
Is in its span. In particular, {u,,..,u,_5} must span some vector. Without loss of
generality, assume it is u,, _ ,. So {u,,...,u,_,} is dependent. So there exists 4; such
that u, = ™" % A.u, Thus,

m—2 m-—2
v~ Y Ay=a(l— ) A)
i=2 i=2

Since the v; are independent, the right side can’t be 0. Thus, there exist A; with A} # 0,
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such that "7 %4 v, = a. Similarly, {us,...,u,,_ } must span some vector. There are
two cases, it is in the first set or not. If it is in the first set, then without loss of
generality, assume it is u,. So {u,,...,u,_,} is linearly dependent, and there exist
y: such that Y yis,=a. It follows that v, is in the span of {v,,...,0,_,},
a contradiction. If it is not in the first set, then without loss of generality assume it is
U, SO {u,...,u,} is linearly dependent, and there exist y; such that 37 ,yv; = a. It
follows that v, is in the span of {v,,...,v,}, again a contradiction. O

The lower bound in Proposition 2a implies for n odd and T > 2, or n even and
T > 3, that n* > n/2, and there is no majority core. So Proposition 2 is a corollary of
Proposition 2a. If n > 5, then the upper bound of Proposition 2a gives n* < n — 1 for
all T, with n* <n — 1 if T <n— 1. Hence, if the number of years in the planning
horizon is smaller than the number of voters minus one, there are plans that are
more stable than the neoclassical optimal plans. But if the number of years in the
planning horizon is larger than n — 1, the lower bound implies that n* > n — 1. So all
plans can be beaten by at least n — 1 votes.

4. Political stability with periodic elections

We now want to find the plan for a T period horizon that is maximally stable against
attempts to amend it during periodic elections every L periods. Hence, we look for
L-period stationary policies, which are identical functions of the underlying prefer-
ences at each decision point. It is crucial that we consider the policy function, and not
the consumption investment plan as the parameter of choice. Once we know the
policy function, we can determine the corresponding consumption-investment plan
for any incoming capital stock.

In the absence of a majority core, we look instead at the idea of an « majority
set —the set of policies that can be defeated by at most a majority of size «, and the
related idea of the minmax set—the set of policies that can be defeated by the
smallest possible majority.

We first consider a simplified version of the problem, in which we ignore the
continuation game, and consider only the L period problem. For each ieN, let
0, =(1,0,0%,...,6F71). Also, for any ce®, let v(c) = (u(c), u(c,), ..., u(cy - ;). Then
the L period utility function of voter i can be written in the form V(c) = J;-v(c),
which is in the class of intermediate preferences (as defined by Grandmont [8]).

Now for any c*e%,let Q = Q,(c*) = {ce¥: ¢, = ¢} for t > L} be the set of feasible
plans differing from c¢* on only the first L periods. For any ¢,c’'eQ define
nc,c)=|{ieN: Vi{c)>V{(c)}|, to be the vote of ¢ against ¢, and n(c)=
max,.., n(c, c) to be the maximum vote in Q against ¢. Define n* = min_,n(c). Any
ceQ for which n(c) = n* is called a minmax plan. Given 1/2 <a < 1, any ceQ for
which n(¢) < an is called an a-majority plan.

Using results of Kramer [11],> we can characterize any a-majority plan (and
hence any minmax plan) as a plan ce Q which is optimal for an imaginary individual

4 For more details the reader can consult Harris [10].
5 This excellent paper has never been published, and is not widely available but can be obtained from the
authors by request.
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with discount vector d =(dy. dy,...,d,_,)€9D, where 2 = co{J;:ie N}. Further, if
there are enough voters, d is an interior point of 2. Thus, we can writed =>"7_, 4,0,
where 1 =(4,,...,4,)€A" is a weighting vector with 4, < 1 for all i.

Lemma 2. Any interior point d of & exhibits increasing marginal willingness to
trade period t — 1 consumption for period ¢t consumption. In other words, defining
y, =d,/d,_,, it follows that y, is increasing in ¢.

Proof: Use the fact that x~ ! is a strictly convex function of x. Then using Jensen’s

inequality,
1 408 408 -1 1
Ll e (4 ]a) - G
Ve ;[2’1;5;]( ) Z:: leé; Yr+1
J J

Thus, the general problem of finding an a-majority plan can be reformulated as
that of finding an optimal plan for an “imaginary” voter whose willingness to trade
next period consumption for this period consumption is increasing over time. We
therefore consider the problem of finding an optimum for such an imaginary voter
when the voter can recommit every L periods.

So let 6 =(1,6,,9,,...), be a discount vector where the discount structure may
not satisfy the usual requirement that §, = 6. For t > 1, we define y, = §,/5,_,. Let
h=(hy,...,h )R- RE, represent the L-period policy function, where h,(k) repre-
sents the capital at the beginning of period ¢ if k is the initial capital stock at time
t =0. For notational convenience, we write h,(k) = k. For any integer j, define
hjp (k) = h(hi(k)), and for any h, define

0= 3 8, P 00) = 0

Now, for any h:R— RE, v:R— R, and keR, define
L-1
wik; hyv)= ) Su(F(h(k))— b, (k) + v(hy(K)).
t=0

We say his an L-period stationary policy if for all k,
h(k)e arg m;lx w(k; b, vy)- 4.1)

If there is a solution to problem® (4.1), then for each initial capital k, =k,
in each period of commitment, the imaginary individual chooses to leave for
the next commitment period the “correct” capital stock, h; (k). Thus, at this solution,
the imaginary individual can be considered to be solving the L period problem

L—-1 L-1
max » Su(F(k)—k,.,;)=max Y dulc)
. {ke} t=0 {ee) t=0
subject to

kogiven, k; = hy (ko).

¢ Ifuncertainty is added, then this is equivalent to a model of Bernheim-Ray [2], who prove existence of
a Markov perfect equilibrium. We are grateful to Raghu Sundaram for this observation.
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Given the way we have formulated the problem, the individuals choosing at time
jLwould use the vector 6, and would make the conjecture that a similar vector would
be used to make the decision at time (j + 1)L. In a stationary equilibrium, these
conjectures would all be consistent and support beliefs that would make it optimal
to leave the correct capital stock to the next commitment period.

If his a solution for (4.1), and k is any initial capital stock, and write k, = h,(k). We
say that (h, k, 8) is a L-period stationary steady state equilibrium if h is an L-period
stationary policy, k; =k, and y,=6,/6,_, is increasing in r. We say that {k,}",
exhibits a political business cycle if ko =k, # k, for some 0 <t < L.

Proposition 3: Any L-period stationary steady state equilibrium must yield a politi-
cal business cycle.

Proof: Assume that his a solution for (4.1). Let ke R be any initial capital stock, and
write k, = h,(k). Then the k,’s will satisfy the first order conditions:

W(Fk,_)—k)=yF (k' (Fk)—k, ) forO<t<L
» Op— U (Flky—1)—kp)=v(kp)

where y,=4,/8,_;. It follows immediately that there is a solution for the first
L equations that satisfies k, =k for all ¢ only if 1 =y,F'(k) for all 0 <t < L which
occurs only if all the y,’s are equal. Therefore, if y, # y, for some t, s, then for any
k satisfying ko, =k, = k, there must be a j for which k; # k. But this is a political
business cycle. O

It follows from Proposition 3 that at least in the limiting case, when steady state
consumption has been reached, the minmax plan exhibits a political business cycle.
Boylan and McKelvey [5] present some computational results in which the shape of
the business cycle yields post election consumption followed by long term re-
investment.

Note that while we have used the minmax set to motivate the above argument,
the same argument would hold for any decision rule that selects an interior point of
9, (for example the mean of the individual discount vectors).

5. One period commitment

In this section we consider the case in which commitment can only be made for one
period. In this setting, we show it is possible to construct a game which has as its
unique Nash equilibrium outcome the optimal plan for the median voter. In
addition to the voters, we add two candidates (who care only about being elected).
The game form corresponds to a sequence of elections, one in each period, in which
candidates propose a one period economic policy which commits them only for one
period, and voters vote for one of the candidates. The policy proposed by the
winning candidate becomes the policy for that period.

We require behavior to be subgame perfect; that is, an equilibrium strategy must
be equilibrium behavior at every period. We ask whether there are any feasible
consumption plans which are political equilibria under the restriction that any
proposed change must be supported by “subgame perfect” behavior. In order to be
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able to define subgame perfection, the specific manner in which decisions are made
needs to be specified. In particular, assumptions need to be made regarding the
sequencing of moves and the specification of the information available to each
individual.

In the finite horizon model, we show that there is a unique equilibrium for any
finite horizon, T, namely the optimal plan for the voter with the median discount
factor. We then show that as T goes to infinity, the solution to the finite horizon
model converges to the stationary solution of the infinite horizon model, namely to
the optimal plan in the infinite horizon model for the voter with median discount
factor.

5.1 Definition of strategies and equilibrium

We need first to be more precise about strategies and equilibrium. A history includes
an initial capital stock, and for each period the proposals of each candidate, the vote
of each individual, and the outcome of the tie breaking procedure. Write
H,=R x (R?* x (Ku{0})" x K) ~* for the set of all histories at timet. Letk':H,-»R
be such that if the history at time ¢ is h,e H,, then the capital endowment at time ¢
is k'(h). Notice that k°(ho) = ho= k. Let # < 2™ be the information partition
which describes the information of individual i at time t. We assume that the parti-
tion is such that individual i knows k,; first note S} is finer than 3, where
= {(H) (k) kek(H)}.

Voter i’s strategy at time ¢ is a function ¢% H, x R* > KU {0} such that for all
candidates’ promises (c',c?), o:H,x (c',c)>Ku{0} is #;-measurable. If
oi(h, ) = j, then voter i, given a history of h and promises c, votes for candidate j. If
a'(h,c) = 0, then voter i abstains. Voter i’s strategy is a sequence o' =)L,

Candidate j’s strategy at time ¢ is a #/-measurable function s}: H,— R such that
for all heH,, si(h)e[0, F(k,(h)]. If si(h)= ¢i, then candidate j, given history &,
promises consumption ¢/, All promises must be feasible. Candidate j’s strategy is
asequence s’ = (s ;. Let 6 = (d*,..., 0") be a profile of strategies for the voters, and
let 5= (s!,s%) be a profile of strategies of the candidates. We write e = (s, 0) for
a (n+ 2)-tuple of strategies by the voters and candidates, respectively. For any
strategy n-tuple o, by the voters, candidate promises ¢ = (c*,c?)eR?%, capital stock k,
and candidate jeK, define

®i(h,c,0)=|{ieN: oi(h,c)=j}| —|{ieN: oi(h,c)eK —{j}}I

to be the plurality for candidate j at time t. For any time ¢, history h, strategy
(n + 2)-tuple e = (s, 0), and xeK, the winning candidate is

argmax; @i(h, s,(h),0) if max; ®i(h,, s(h,),0)>0
Wt(hn e,x)= .

X otherwise.
Thus, w,(h,, e, x) indicates the winning candidate at time ¢ if the history stock is h,,
candidates adopt the strategies s/, voters adopt the strategies o*, and ties are broken
in favor of candidate x. Every strategy e, capital stock k, and vector x =
(Xg» X1, X, ..., Xp)e KT determines a sequence of winning candidates, {(wihye,%) }o<i<1-
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Suppose at time ¢ the history is he H, _ |, the strategy is e, and the tie break is x.
Then, after period ¢ + 1, the history will be
hyi(he,x)=(hih,e),s;, 4 (Hi(h e),e),s t+r+1(h (h,e),e),
atl+r+ ((hi(h,e)e),..., Ot ev 1 (e €),€),x Xpsot1h

where hi(h, e,x)= h. Let

Ct(hv e, x) = Stw‘(h"evx)(ht)

be the consumption selected by the winning candidate. Let
V:(h, e, x) z 5 t+ t(ht+t(h , x)’ ¢, x))

Thus, Vi(h, e, x) represents the payoff to voter ieN in period ¢, given strategies e,
history h, and tie breaking procedure x.
For each t,x, is a random variable which is 1 with probability 1, and 2 with
probability 3. Let G(x) denote the joint distribution of x.
Note that
EV(h,e)=Eujci(h,e)) + 5,EV:, (K’ (h,e),e).

Also, for any ' period consumption, c,eR,, let
EVih,e;c)=ufc)+S,EV, ((hc, ol (hc),...,a"(h,c))e).

This represents the value, to voter i, of a one period deviation, in which ¢, 18
chosen in the period ¢, and then all players revert to e in periods t + 1,t +2,... |
Next, for any time ¢, capital stock k, strategy n + 2 tuple e, and jeK, define ‘

1 if @i(hys(h),0)>0
pih,e)={ 0 if ®i(h,s(h),0)<0
if @i(h, s(h),0)=0

=

So pj(h,, ) is the probability that candidate j wins. For any history h, strategy n + 2
tuple e, and x, define
T-t

Wih,e,x) = Z 03pi(hih, e,x), )

to be the expected payoff for candidate j.
Also, as before, we can define, forany t=1,..., T, jeK, and ceR,,
EWi(h,e;c)y =1+ 8, EWi((h,c!,s™(h), a'(h, ¢/, s'(R)),. .., o"(h, ¢, si(h))), e, x)

if @i(h,(c’,s7i(k)),0) >0

= 0;EW{((h, ¢/, s~ (h), 6" (h, I, (W), ..., a"(h, &, s’ (R))), e, x)
if @i(h,(c’,s7i(k)),0) <0

=3+ 0, EWi(h,c),s7I(h), 0" (h, ), S/(B)), .., o"(h, &, s'(h))), e, x)
if @i(h, (¢!, s7(k)), 0) =
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This represents the expected payoff to candidate J, if the capital stock were k, and
candidate j were to unilaterally vary its strategy at time ¢ using ¢’ and then all
players revert to e.

Definition: A strategy e* = (s*, 0*) is a growth equilibrium if, for all 1,
a. For the voters: For all ieN, heH,, and ¢ = (¢!, c?)eR?,
oi*(h,c) = argmax,x EVi(h,e*; ¢y if EVi(h,e*;c’) # EVi(h,e*;c’)
a*(h,c)=0 otherwise
b. For the candidates: for all jeK and heH,
si*(h)eargmax EWi(h,e*;c).

ceR+

Thus, e* is a growth equilibrium if it is a subgame perfect equilibrium to the finite
horizon candidate/voter game with the additional stipulation that voters adopt
dominant strategies at each stage of the game.

5.2 Characterization of growth equilibria

Let {h,(k, T)} 7! be the optimal investment plan for an individual with the median
discount factor 8, when the initial capital level is k and there are T + 1 periods, and
let {g,(k, T)}7_, be the corresponding consumption plan. Le,,
gk, Ty = F(h(k, T)) — b1 1 (k, T).
Proposition 4 states that in a growth equilibrium the consumption plan is selected
according to g.
Proposition 4: For any TN, any growth equilibrium satisfies, for all0<t<Tand
keR,,
si(h, T)=s(h, T) = go(k'(h), T —1).

It follows that on the equilibrium plan, consumption is given by {g.k, T)} .

To prove Proposition 4, we need to introduce some additional notation and

prove a preliminary lemma. Define {h,(k, T)};.;' to be a solution to the following
problem:

T

max { Y. dulF(k) —k,H]}

{k,};’_o t=0

such that
0<k, ,<F(k) t=01,..T

and

ko=k>0.

Since ¥'(0) = oo the inequalities do not bind except for ky, ;. Furthermore the
objective function is strictly concave and thus there is exactly one solution to the
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problem which is given by the following conditions:
OF (kyu'[F(k)—k, . J=u[F(k,_,)—k] fort=12,...,T,
kry1=0, ko=k.

Let v'(k) be the value function for the median discount factor when the optimal
economic plan for voter {k,} = {k,(k, T —#)}7=! is selected. Le.,
T-1t

vi(k) = ZO S'ulF(k)— k.,

By standard arguments, v*(k) is strictly concave.
The following lemma gives a monotonicity property of optimal plans in the finite
horizon setting:

Lemma 3: Let {k,}T_, and {k,}7_, be two optimal growth plans for a voter with
discount factor 8, where k, > k,. Then,

F(k)—k,.,>Fk)—k,., fort=1,..,T.

Proof: Suppose the lemma does not hold. Let T be the smallest positive integer for
which the inequality does not hold and let {k,}1.,, {k.}._, be two optimal growth
sequences for which the lemma does not hold. Suppose k, > k,. Then

—ky > - El =F(ko)—k,> F(Eo) - El =u[d(ky) — k] < “,[5(;0) - ];1]
The first order conditions then give

6F'(k )u'[F(k,)— k,] < 6F (k JW[F(k,)—k,].
Thus _ .
w[F(ky)—k,] <u[F(k,)~k,]
and
ky>k,.

By repeatedly using the first ordez conditions we get that E, >k, for t=2...,T+1
But this is not possible since ky,, =k;., =0. Therefore, k, >k, and T > 1.
Furthermore let

L=k

L=k,, fort=1,...,T—1

Then {I,}7-}, {I,}J;! are two optimal growth sequences for which the lemma does
not hold, contradicting the minimality of T. |

Proof of Proposition 4: The proof is by induction on the time horizon, T. If T = 0,
then sg(h, T) = F(hy(k, T)) = F(k) = g,(k, 0) is clearly the only Nash equilibrium for
the candidates, since all voters” one period utility functions are monotonic in
consumption. Further, any undominated strategy for a voter must have the property
that the voter always votes for the candidate offering the highest level of consump-
tion, abstaining only if there is a tie.

Now we assume the result is true for T — 1, and show it is true for T. Thus,
suppose that for all >0, and all k, si(h,T)=g,(k'(h), T —t) are subgame
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perfect responses. Suppose that shk, T) #golk, T). 1f sh(k, T)> go(k, T), then
F(k) —si(h, T) < F(k)—go(k, T). By the monotonicity of g,, proved in the above
Lemma, and the monotonicity of u,

u(g(F(k) — gok, T), T — 1)) — (g (F (k) — so(k, T), T — 1)) > 0.

Note that EV™(h, e*,¢) is strictly concave in ¢ (see Harris [10]). Let c* = g(k) be the
(unique) maximum of EV7in [0, F(k' (h))]. Now pick jeK,and pick cie[0, F(k'(h))]
with ¢/ # c*. There are two cases.

If ¢/ > c*, then, using the monotonicity of g,(k, T — 1) in k for all ¢ > 1, and the
monotonicity of u(c) in ¢, we get ¢/ > c*=F(k) — ¢/ < F(k) — c*=g,(F(k) — c,T—1)
< g{F(k)—c*, T—1) for all t> 1=u(g,(F(k)—c*, T — 1) —ulg(F(k)—c’, T—1))>0 for
all r > 1. But then, if §, > J,,, we have

EVi(h,e*;c*)— EVi(h,e*;c))
= u(c*) — u(c) + 8,Y. 8! [u(g(F (k) — c*, T = 1)) — u(g(F(k) — ¢/, T — 1))]

> u(c¥) — u(c) + 8,, Y. 4, [u(g(F (k) — c*, T — 1) — u(g(F(k) — ¢, T = 1))]

= EV™(h,e*;c*) — EV(h,e*; ¢)) > 0.

Hence, EVi(h,e*;c*)> EVi(he*;c)) for all i with 6;>6,. If ¢! < c*, a similar
argument establishes that EVi(h,e*;c*)> EVi(h,e*;c’) for all i with 6; <6, It
follows that in both cases, we have

@i (h,(c*, 57 *(h)), 0%) = Di(h, (c*,c*),0*) =0
> |{ieN: EVi(h,e*;c)) > EVi(h, e¥;c*)}| —|{ieN: EViy(h,e*;c*) > EVi(h, e*;c)}|
= |{ieN:ab(h,(c),c*) = jit — [{ieN:af(h (¢!, c*))ek — { j}}]
= @} (h,(c’,c*),0%) = Dy(h, (c?, s7I*(h)), a%).
Hence @ (h,(c’,s™7*(h))), 0*) is maximized at ¢/ = c*. This proves the result. O

The next two propositions state that as the time horizon goes to infinity, the
growth equilibrium selects the optimal plan for the voter with the median discount
factor, and such a plan is an equilibrium for the infinitely repeated game. The
intuition for the propositions is as follows. Since there is a maximum amount that
can be produced at any given time period, the discounted value of consumption after
time T can be made arbitrarily small by taking T to be large enough. Therefore, the
solution of the T-period problem can be made arbitrarily close to the solution of the
infinite period problem (over the periods that overlap) by taking T to be big enough.

Proposition 5: As T approaches oo, the optimal plan for the median voter,
{g.(k, T)} .| converges uniquely to the optimal plan for the median voter in the
Infinite horizon model, {g,(k)}/2,.

Proof: Fix k, and let  be the discount factor of the median voter. For TeZ u{},
let FT = [0,2]7 be the set of feasible consumption plans for the T period model,
when the initial capital stock is k. For ce FT, write V7(c) =X, 6'u(c,). For TeZ,
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define ¢ = g,(k, T) and ¢/ = g,(k). So

¢TI =argmax V7(c),
ceFT
and

¢* =argmax V*®(c).
ceF®

By the assumptions on u, and 4, it follows that for all TeZu{w}, VT (c") < 0.
Define ¢Te F* by

L el ife<T

“=Yl0 ifr>T.

Note that F® is compact with the product topology. Thus there exists a sequence
(T}, and a Ze F* such that ™ —¢. Let ¢ >0. Choose Tsuch that

g

=ZT d'u(c) < 5

t

Choose I such that i > I implies

|VTET) — VT(@)] < % and T,> T.
Then
Ve@) < Vo(c*) < VTIE™) +§s YT@E) +e< V(@) +e

= V(@)= V=(c*)=Ceargmax V=(c).
ceF®
Finally, uniqueness follows because the set of optimal plans for the infinite horizon
model is convex, and any strict convex combination is strictly better. [

Proposition 6: Let T = co. Then, (s, o) is a growth equilibrium, where for all t and
k, s}(h) = s2(h) = go(k'(h)) and, for any ¢ = (ct,c?)eR?

oi(h.c) = argmax EVi(h,e,c%) if EVi(he,ct) # EVi(he,c?).

dek

Proof: Suppose (s, ¢) is not a growth equilibrium. There are two possible cases:
(i) Suppose there exists s’ and he H* such that
EW{h,e™),s")> EW jh, e 4, s).
Then there exists 7 > 0 such that
T T
E [ Y 5pi(hi(h,€),e)]1>E l: Y. 8ip(hilh, e), e):|,
t=1

t=1

where ¢ = (e 4, s"). We know that e is an equilibrium to the game with horizon
t+ T. Thus

T T
E|: Y, &\pi(hi(h,€), e’)] <E [ Y 8ipi(hih e), e):|,
t=1 t=1

a contradiction.
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(i) Suppose that there is a ¢* and he H' such that

EV (h,e ',6")> EV{h,e).

The same type of argument yields a contradiction. []
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